初中数学华师大版八年级上学期 第14章 14.1.1 直角三角形三边的关系

试卷更新日期:2019-11-11 类型:同步测试

一、单选题

  • 1. 如图所示,在Rt△ABC中,∠C=90°,AC=11cm,点P从点A出发沿AC以1cm/s的速度移动,点Q从点C出发沿CB以2cm/s的速度移动,如果P,Q分别从A,C两点同时出发,当它们相距10cm时所需的时间为(   )

    A、3s B、4s C、5s D、3s或1.4s
  • 2. 下列三条线段能构成直角三角形的是(   )
    A、6, 7, 8 B、2, 3, 4 C、3, 4, 6 D、6,8, 10
  • 3. 在直线l上有三个正方形m、q、n,若m、q的面积分别为5和11,则n的面积(   )

    A、4 B、6 C、16 D、55
  • 4. 将一根长24cm的筷子置于底面直径为5cm,高为12cm的圆柱水杯中,设筷子露在杯子外面的长度为h,则h的取值范围是(   )

    A、12cm≤h≤19cm B、12cm≤h≤13cm C、11cm≤h≤12cm D、5cm≤h≤12cm

二、填空题

  • 5. 若直角三角形两条直角边长分别为 512 ,则斜边上的中线长为
  • 6. 若一直角三角形的两直角边长为 3 ,1,则斜边长为

三、解答题

  • 7. 如图,一架10米长的梯子斜靠在墙上,刚好梯顶抵达8米高的路灯.当电工师傅沿梯上去修路灯时,梯子下滑到了B′处,下滑后,两次梯脚间的距离为2米,则求此时梯顶离路灯的距离。

  • 8. 如图,△ABC中,ABACBC=4cm , 作ADBC , 垂足为D , 若AD=4cm , 求AB的长.

  • 9. 如图,在Rt△ABC中,∠C=90°,AC=5,AB=13,求BC.

四、综合题

  • 10. 我们学习了勾股定理后,都知道“勾三、股四、弦五”.

    观察:3、4、5;5、12、13;7、24、25;9、40、41;…,发现这些勾股数的勾都是奇数,且从3起就没有间断过.

    (1)、请你根据上述的规律写出下一组勾股数:
    (2)、若第一个数用字母n(n为奇数,且n≥3)表示,那么后两个数用含n的代数式分别表示为 , 请用所学知识说明它们是一组勾股数.
  • 11. 如图,在△ABC中,AD⊥BC,AD=12,BD=16,CD=5.

    求:

    (1)、△ABC的周长;
    (2)、判断△ABC是否是直角三角形?为什么?