湖北省武汉市东西湖区2019届九年级上学期数学期中考试试卷
试卷更新日期:2019-10-09 类型:期中考试
一、单选题
-
1. 将一元二次方程 4x2+5x=81 化成一般式后,如果二次项系数是 4,则一次项系数和常数项分别是( )A、5,81 B、5,﹣81 C、﹣5,81 D、5x,﹣812. 下面有 4 个汽车标致图案,其中是中心对称图形的是( )A、
B、
C、
D、
3. 二次函数y=4(x﹣3)2+7的顶点为( )A、(-3,-7) B、(3,7) C、(-3,7) D、(3,-7)4. 如果 2 是方程 x²﹣c=0 的一个根,则常数 c 是( )A、4 B、﹣4 C、±2 D、±45. 用配方法解方程 x²﹣8x+1=0 时,方程可变形为( )A、(x﹣4)²=15 B、(x﹣1)²=15 C、(x﹣4)²=1 D、(x+4)²=156. 如图,⊙O 中,弦 AB、CD 相交于点 P,∠A=40°,∠APD=75°,则∠B=( )A、15° B、40° C、75° D、35°7. 若点 M(a,﹣2),N(3,b)关于原点对称,则 a+b=( )A、5 B、﹣5 C、1 D、﹣18. 将抛物线 向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为( )A、 B、 C、 D、9. ⊙O 的直径 AB 长为 10,弦 MN⊥AB,将⊙O 沿 MN 翻折,翻折后点 B 的对应点为点 B′,若 AB′=2,MB′的长为( )A、2 B、2 或 2 C、2 D、2 或 210. 已知二次函数 y=ax2+bx+c(a≠0),过(1,y1)(2,y2).①若 y1>0 时,则 a+b+c>0②若 a=b 时,则 y1<y2③若 y1<0,y2>0,且 a+b<0,则 a>0④若 b=2a﹣1,c=a﹣3,且 y1>0,则抛物线的顶点一定在第三象限上述四个判断正确的有( )个.
A、1 B、2 C、3 D、4二、填空题
-
11. 已知方程 x2﹣4x+3=0 的两根分别为 x1、x2 , 则 x1+x2=.12. 若函数y=x2+2x﹣m的图象与x轴有且只有一个交点,则m的值为.13. 某村种的水稻前年平均每公顷产7200kg,今年平均每公顷产8450kg.设这两年该村水稻每公顷产量的年平均增长率为x,根据题意,所列方程为。14. 在平面直角坐标系中,以原点为中心,把点A(4,5)逆时针旋转90O , 得到的点B的坐标为.15. 如图,在中⊙O,AB 是直径,弦 AE 的垂直平分线交⊙O 于点 C,CD⊥AB于 D,BD=1,AE=4,则 AD 的长为.16. 在△ABC 中,∠ABC=60°,BC=8,点 D 是 BC 边的中点,点 E 是边 AC上一点,过点 D 作 ED 的垂线交边 AC 于点 F,若 AC=7CF,且 DE 恰好平分△ABC 的周长,则△ABC 的面积为.
三、解答题
-
17. 解方程:x2﹣2x﹣3=0;18. 某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是91,每个支干长出多少小分支?
19. 如图,抛物线y1=x2﹣2与直线y2=x+4交于A,B两点.(1)、求A,B两点的坐标;(2)、当y1<y2时,直接写出自变量x的取值范围.20. 在平面直角坐标系中,Rt△ABC 的三个顶点分别是 A(﹣4,2),B(﹣1,4),C(﹣1,2).(1)、将△ABC 以点 C 为旋转中心旋转 180°,画出旋转后对应的△ , 的坐标为;(2)、平移△ABC,点 B 的对应点 的坐标为(4,﹣1),画出平移后对应的△ , 的坐标为;(3)、若将△ 绕某一点旋转可以得到△ ,请直接写出旋转中心的坐标 为.21. 如图,已知锐角△ABC内接于⊙O,连接AO并延长交BC于点D.(1)、求证:∠ACB+∠BAD=90°;(2)、过点D作DE⊥AB于E,若∠ADC=2∠ACB,AC=4,求DE的长.22. 如图,一个滑道由滑坡(AB段)和缓冲带(BC段)组成,滑雪者在滑坡上滑行的距离y1(单位:m)和滑行时间t1(单位s)满足二次函数关系,并测得相关数据:滑行时间t1/s
0
1
2
3
4
滑行距离y1/s
0
4.5
14
28.5
48
滑雪者在缓冲带上滑行的距离y2(单位:m)和滑行时间t2(单位:s)满足:y2=52t2﹣2t22 , 滑雪者从A出发在缓冲带BC上停止,一共用了23s.
(1)、求y1和t1满足的二次函数解析式;(2)、求滑坡AB的长度.23. 等腰△ABC 中,AB=AC,∠BAC=120°,点 P 为平面内一点.(1)、如图 1,当点 P 在边 BC 上时,且满足∠APC=120°,求 的值;(2)、如图 2,当点 P 在△ABC 的外部,且满足∠APC+∠BPC=90°,求证:BP= AP;(3)、如图 3,点 P 满足∠APC=60°,连接 BP,若 AP=1,PC=3,直接写出BP 的长度.24. 已知抛物线 :y=ax2 过点(2,2)(1)、直接写出抛物线的解析式;(2)、如图,△ABC 的三个顶点都在抛物线 上,且边 AC 所在的直线解析式为y=x+b,若 AC 边上的中线 BD 平行于 y 轴,求 的值;(3)、如图,点 P 的坐标为(0,2),点 Q 为抛物线上 上一动点,以 PQ 为直径作⊙M,直线 y=t 与⊙M 相交于 H、K 两点是否存在实数 t,使得 HK 的长度为定值?若存在,求出 HK 的长度;若不存在,请说明理由.