湖北省武汉市东湖高新区2019届九年级上学期数学期中考试试卷
试卷更新日期:2019-10-09 类型:期中考试
一、单选题
-
1. 方程x(x+5)=0化成一般形式后,它的常数项是( )A、﹣5 B、5 C、0 D、12. 抛物线y=﹣5(x+2)2﹣6的对称轴和顶点分别是( )A、x=2和(2,﹣6) B、x=2和(﹣2,﹣6) C、x=﹣2和(﹣2,﹣6) D、x=﹣2和(2,﹣6)3. 下列几何图形中不是中心对称图形的是( )A、圆 B、平行四边形 C、正三角形 D、正方形4. 不解方程,判断方程x2﹣4 x+9=0的根的情况是( )A、无实根 B、有两个相等实根 C、有两个不相等实根 D、以上三种况都有可能5. 抛物线y=﹣x2向上平移2个单位,再向左平移3个单位得到的抛物线解析式为( )A、y=﹣(x+3)2+2 B、y=﹣(x﹣3)2+2 C、y=﹣(x+3)2﹣2 D、y=﹣(x﹣3)2﹣26. 青山村种的水稻2016年平均每公项产7500kg,2018年平均每公顷产8500kg,求每公顷产量的年平均增长率.设年平均增长率为x,则可列方程为( )A、7500(1﹣x)2=8500 B、7500(1+x)2=8500 C、8500(1﹣x)2=7500 D、8500(1+x)2=75007. 如图,点C是⊙O的劣弧AB上一点,∠AOB=96°,则∠ACB的度数为( )A、192° B、120° C、132° D、l508. 下列说法正确的是( )A、平分弦的直径垂直于弦 B、圆是轴对称图形,任何一条直径都是圆的对称轴 C、相等的弧所对弦相等 D、长度相等弧是等弧9. 如图,AB是⊙O的直径,AB=4,E是 上一点,将 沿BC翻折后E点的对称点F落在OA中点处,则BC的长为( )A、 B、2 C、 D、10. 抛物线y=ax2+bx+1的顶点为D,与x轴正半轴交于A,B两点,A在B左,与y轴正半轴交于点C,当△ABD和△OBC均为等腰直角三角形(O为坐标原点)时,b的值为( )A、2 B、﹣2或﹣4 C、﹣2 D、﹣4
二、填空题
-
11. 如果x=2是方程x2﹣c=0的一个根,那么c的值是.12. 与点P(3,4)关于原点对称的点的坐标为.13. 如果(m﹣1)x2+2x﹣3=0是一元二次方程,则m的取值范围为 .14. 汽车刹车后行驶的距离s(单位:m)关于行驶时间t(单位:s)的函数解析式是s=﹣6t2+15t,则汽车刹车后到停下来需要秒.15. 二次函数y=(x﹣2)2当2﹣a≤x≤4﹣a,最小值为4,则a的值为.16. 如图,在平面直角坐标系中,点A(0,3),B是x轴正半轴上一动点,将点A绕点B顺时针旋转60°得点C,OB延长线上有一点D,满足∠BDC=∠BAC,则线段BD长为.
三、解答题
-
17. 解方程:x2﹣4x﹣4=0.(用配方法解答)18. 如图,在△AOB和△DOC中,AO=BO,CO=DO,∠AOB=∠COD,连接AC、BD,求证:△AOC≌△BOD.19. 如图,利用一面墙(墙的长度不限),另三边用20m长的篱笆围成一个面积为50m2的矩形场地,求矩形的长和宽各是多少.20. 已知关于x的方程mx2﹣(m+2)x+2=0(m≠0).(1)、求证:方程总有两个实数根;(2)、若方程的两个实数根都是整数,求正整数m的值.
21. 如图,⊙O的半径OA⊥弦BC于H,D是⊙O上另一点,AD与BC相交于点E,若DC=DE,OB= ,AB=5.(1)、求证:∠AOB=2∠ADC.(2)、求AE长.22. 名闻遐迩的采花毛尖明前茶,成本每厅400元,某茶场今年春天试营销,每周的销售量y(斤)是销售单价x(元/斤)的一次函数,且满足如下关系:x(元/斤)
450
500
600
y(斤)
350
300
200
(1)、请根据表中的数据求出y与x之间的函数关系式;(2)、若销售每斤茶叶获利不能超过40%,该茶场每周获利不少于30000元,试确定销售单价x的取值范围.23.(1)、如图1,△AEC中,∠E=90°,将△AEC绕点A顺时针旋转60°得到△ADB,AC与AB对应,AE与AD对应①请证明△ABC为等边三角形;
②如图2,BD所在的直线为b,分别过点A、C作直线b的平行线a、c,直线a、b之间的距离为2,直线a、c之间的距离为7,则等边△ABC的边长为多少.
(2)、如图3,∠POQ=60°,△ABC为等边三角形,点A为∠POQ内部一点,点B、C分别在射线OQ、OP上,AE⊥OP于E,OE=5,AE=2 ,求△ABC的边长.24. 如图1,抛物线y=ax2﹣2x﹣3与x轴交于点A、B(3,0),交y轴于点C(1)、求a的值.(2)、过点B的直线1与(1)中的抛物线有且只有一个公共点,则直线1的解析式为.(3)、如图2,已知F(0,﹣7),过点F的直线m:y=kx﹣7与抛物线y=x2﹣2x﹣3交于M、N两点,当S△CMN=4时,求k的值.