湖南省张家界市慈利县2018-2019学年八年级上学期数学期中考试试卷

试卷更新日期:2019-09-26 类型:期中考试

一、单选题

  • 1. 分式 x24x+2 的值为0,则(   )
    A、x=2 B、x=﹣2 C、x=±2 D、x=0
  • 2. 下列等式或不等式成立的是 ( )
    A、32<23 B、(3)2<(2)3 C、9×103÷3×104=30 D、(0.1)2>1
  • 3. 若 xy=xy0 ,则分式 1x1y 等于 ( )
    A、1xy B、yx C、1 D、1
  • 4. 分式 12x12y215xy 的最简公分母为 ( )
    A、2xy2 B、5xy C、10xy2 D、10x2y2
  • 5. 以下列各组线段为边,能组成三角形的是(       )
    A、1cm,2cm,3cm B、4cm,6cm,8cm, C、5cm,6cm,12cm, D、2cm,3cm,5cm
  • 6. 下列命题的逆命题一定成立的是 ( )

    ①对顶角相等; ②同位角相等,两直线平行;③全等三角形的周长相等;④面积相等的两个三角形全等

    A、①②③ B、①④ C、②④ D、
  • 7. 小明用一根长20cm的铁丝做一个周长是20cm的等腰三角形,则腰长x的取值范围是 ( )
    A、0<x<10 B、0<x<5 C、5≤x≤10 D、5<x<10
  • 8. 如图所示,在△ABC中,∠BAC=106°,EFMN分别是AB、AC的垂直平分线,EMBC上,则∠EAM等于 ( )

    A、58° B、32° C、36° D、34°

二、填空题

  • 9. 化简: xyy2x2 =.
  • 10. 红细胞的平均直径为 0.0000077m ,将0.0000077用科学记数法表示为
  • 11. 若2018m=6,2018n=4,则20182mn
  • 12. 如图,在△ABC中,∠B与∠C的角平分线交于点O. 过O点作DEBC , 分别交AB、AC于D.E.若AB=8,AC=6,则△ADE的周长是.

  • 13. 等腰三角形的一个角为40°,则它的底角为.

  • 14. 已知线段abc , 求作△ABC , 使BC=aAC=bAB=c , 下面作法的合理顺序为 (填序号)①分别以BC为圆心,cb为半径作弧,两弧交于点A;②作直线BP , 在BP上截取BC=a;③连接ABAC , △ABC为所求作的三角形。

三、解答题

  • 15. 计算: (x3y2)2÷x62018)0
  • 16. 解方程: xx-22x2-4 =1.
  • 17. 先化简 x4x29÷(1x31) 再从 13 、3、4中选一个你喜欢的数代入求值.
  • 18. 列方程或方程组解应用题:

    小马自驾私家车从A地到B地,驾驶原来的燃油汽车所需油费108元,驾驶新购买的纯电动车所需电费27元,已知每行驶1千米,原来的燃油汽车所需的油费比新购买的纯电动汽车所需的电费多0.54元,求新购买的纯电动汽车每行驶1千米所需的电费.

  • 19. 如图,AD⊥BD,AE平分∠BAC,∠B=30°,∠ACD=70°.求∠AED的度数.

  • 20. 如图,点B,F,C,E在直线l上(F,C之间不能直接测量),点A,D在l异侧,测得AB=DE,AC=DF,BF=EC.

    (1)、求证:△ABC≌△DEF;
    (2)、指出图中所有平行的线段,并说明理由.
  • 21. 在等边三角形ABC中,点P在△ABC内,点Q在△ABC外,且∠ABP=∠ACQ,BP=CQ.

    (1)、求证:△ABP≌△CAQ;
    (2)、请判断△APQ是什么形状的三角形?试说明你的结论.
  • 22. 如图,AB∥CD,以点A为圆心,小于AC长为半径作圆弧,分别交AB,AC于E,F两点,再分别以E,F为圆心,大于 12 EF长为半径作圆弧,两条圆弧交于点P,作射线AP,交CD于点M。

    (1)、若∠ACD=114°,求∠MAB的度数;
    (2)、若CN⊥AM,垂足为N,求证:△ACN≌△MCN。
  • 23. 如图,已知正方形ABCD的边长为10厘米,点E在边AB上,且AE=4厘米,如果点P在线段BC上以2厘米/秒的速度由B点向C点运动,同时,点Q在线段CD上由C点向D点运动.设运动时间为t秒.

    (1)、若点Q的运动速度与点P的运动速度相等,经过2秒后,△BPE与△CQP是否全等?请说明理由;
    (2)、若点Q的运动速度与点P的运动速度不相等,则当t为何值时,能够使△BPE与△CQP全等;此时点Q的运动速度为多少.