初中数学浙教版九年级上册3.2 图形的旋转 强化提升训练

试卷更新日期:2019-09-19 类型:同步测试

一、综合提升

  • 1. 如图所示,可以看作是正方形ABCD绕点O分别旋转多少度前后的图形共同组成的(   )

    A、30°,45° B、60°,45° C、45°,90° D、22.5°,67.5°
  • 2. 如图,▱ABCD绕点A逆时针旋转30°,得到▱AB′C′D′(点B′与点B是对应点,点C′与点C是对应点,点D′与点D是对应点),点B′恰好落在BC边上,则∠C=(   )

    A、105° B、170° C、155° D、145°
  • 3. 如图,△ABC中,∠A=75°,∠B=50°,将△ABC绕点C按逆时针方向旋转,得到△A’B’ C,点A的对应点A'落在AB边上,则∠BCA'的度数为(   )


    A、20° B、25° C、30° D、35°
  • 4. 如图,在Rt△ABC中,∠BAC=90°,将△ABC绕点A顺时针旋转90°后得到△AB'C'(点B的对应点是点B',点C的对应点是点C'),连接CC',若∠B=78°,则∠CC'B'的大小是( )

    A、23° B、30° C、33° D、39°
  • 5. 如图在平面直角坐标系中,将△ABO绕点A顺时针旋转到△AB1C1的位置,点B、O分别落在点B1C1处,点B1x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2x轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2x轴上,依次进行下去…若点A32 ,0),B(0,2),则点B2018的坐标为(   )

    A、(6048,0) B、(6054,0) C、(6048,2) D、(6054,2)
  • 6. 如图,把一副三角板如图甲放置,其中 ACB=DEC=90°A=45°D=30° ,斜边 AB=6cmDC=7cm ,把三角板 DCE 绕点 C 顺时针旋转 15° 得到 ΔD'CE' (如图乙).这时 ABCD' 相交于点 OD'E'AB 相交于点 F ,则 OFE' 的度数为.

          

  • 7. 如图,在平面直角坐标系 xOy 中,点 AP 分别在 x 轴、 y 轴上, APO=30°  . 先将线段 PA 沿 y 轴翻折得到线段 PB ,再将线段 PA 绕点 P 顺时针旋转30°得到线段 PC ,连接 BC . 若点 A 的坐标为 (10)  ,则线段 BC 的长为.

  • 8. 如图,在△AOB和△COD中,∠AOB=∠COD=90°,∠B=50°,∠C=60°,点D在边OA上,将图中的△COD绕点O按每秒20°的速度沿顺时针方向旋转一周,在旋转的过程中,在第t秒时,边CD恰好与边AB平行,则t的值为.

  • 9. 将两块全等的直角三角板按如图方式放置, BAC=B1A1C1=30° ,固定三角板 A1B1C ,然后将三角板 ABC 绕点 C 顺时针旋转到如图的位置,此时 ABA1CA1B1 分别交于点 DEACA1B1 交于点 F ,且 ABA1B1 ,则旋转角的度数为 °

  • 10. 如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后, ABC 的顶点均在格点上,点 C 的坐标为 (41)

    ①把 ABC 向上平移5个单位后得到对应的 A1B1C1 ,画出 A1B1C1 ,并写出 C1 的坐标;

    ②以原点. O .为对称中心,画出 ABC 与关于原点. O .对称的 A2B2C2 ,并写出点 C2 的坐标.

    ③以原点O为旋转中心,画出把 ABC 顺时针旋转90°的图形△A3B3C3 , 并写出C3的坐标.

  • 11. 如图,点A′在Rt△ABC的边AB上,∠ABC=30°,AC=2,∠ACB=90°,△ACB绕顶点C按逆时针方向旋转与△A′CB′重合,A'B'与BC交于点D,连接BB′,求线段BB′的长度.

  • 12. 一副三角板OAC、OBD如图(1)放置,(∠BDO=30°、∠CAO=45°)

    (1)、若OM、ON分别平分∠BOA、∠DOC,求∠MON的度数;
    (2)、将三角板OBD从图(1)绕O点顺时针旋转如图(2),若OM、ON分别平分∠BOA、∠DOC,则在旋转过程中∠MON如何变化?
    (3)、若三角板OBD从图(1)绕O点逆时针旋转如图(3),若其它条件不变,则(2)的结论是否成立?
    (4)、若三角板OBD从图(1)绕O点逆时针旋转,其它条件不变,在旋转过程中,∠MON是否一直不变,在备用图中画图说明.

二、中考演练

  • 13. 如图,△A′B′C′是由△ABC经过平移得到的,△A′B′C′还可以看作是△ABC经过怎样的图形变化得到?下列结论:①1次旋转;②1次旋转和1次轴对称;③2次旋转;④2次轴对称.其中所有正确结论的序号是(      )

    A、①④ B、②③ C、②④ D、③④
  • 14. 如图,平面直角坐标系中,点B在第一象限,点A在x轴的正半轴上,∠AOB=∠B=30°,OA=2,将△AOB绕点O逆时针旋转90°,点B的对应点 B' 的坐标是(     )

    A、(12+3) B、(33) C、(32+3) D、(33)
  • 15. 如图,将 RtΔABC 的斜边AB绕点A顺时针旋转 α(0°<α<90°) 得到AE,直角边AC绕点A逆时针旋转 β(0°<β<90°) 得到AF,连结EF.若 AB=3AC=2 ,且 α+β=B ,则 EF= .

  • 16. 如图,等边三角形ABC内有一点P,分別连结AP、BP、CP,若 AP=6BP=8CP=10 .则 SABP+SBPC

  • 17. 一副三角板如图放置,将三角板ADE绕点A逆时针旋转 α(0<α<90) ,使得三角板ADE的一边所在的直线与BC垂直,则 α 的度数为.

  • 18. 已知:在平面直角坐标系中, ΔABC 的三个顶点的坐标分别为 A(54)B(03)C(21) .

    ①画出 ΔABC 关于原点成中心对称的 ΔA1B1C1 ,并写出点 C1 的坐标;

    ②画出将 A1B1C1 绕点 C1 按顺时针旋转 90 所得的 ΔA2B2C1 .