2017年吉林省延边州中考数学模拟试卷
试卷更新日期:2017-06-20 类型:中考模拟
一、单项选择题
-
1. 下列各数中最小的数是( )A、0 B、3 C、﹣ D、12. 2016年10月17日,神舟十一号飞船成功发射升空.发射当天约有161000个相关精彩栏目的热门视频在网络上热播.将数据161000用科学记数法表示为( )A、1.61×103 B、0.161×105 C、1.61×105 D、16.1×1043. 用4个完全相同的小正方体组合成如图所示的立体图形,它的左视图为( )A、
B、
C、
D、
4. 下列计算正确的是( )A、2a2•a=3a3 B、(2a)2÷a=4a C、(﹣3a)2=3a2 D、(a﹣b)2=a2﹣b25. 将一副三角板如图方式放置,则∠1的度数是( )A、15° B、20° C、25° D、30°6. A,B两地相距180km,新修的高速公路开通后,在A,B两地间行驶的长途客车平均车速提高了50%,而从A地到B地的时间缩短了1h.若设原来的平均车速为xkm/h,则根据题意可列方程为( )
A、 ﹣ =1 B、 ﹣ =1 C、 ﹣ =1 D、 ﹣ =1二、填空题
-
7. 计算: + = .8. 因式分解:m2﹣4n2= .9. 不等式5x>2x﹣6的解集是 .10. 若x2﹣6x+7=(x﹣3)2+n,则n= .11. 若两个连续整数x、y满足x< +1<y,则x+y的值是 .12. 夏天某地区一周最高气温的走势图如图所示,这组数据的众数是℃.13. 如图,某数学兴趣小组将边长为6的正方形铁丝框ABCD变形为以A为圆心,AB为半径的扇形,则扇形的圆心角∠DAB的度数是度.(结果保留π)14. 如图,线段OA=4,点C是OA的中点,以线段CA为对角线作正方形ABCD.将线段OA绕点O向逆时针方向旋转60°,得到线段OA′和正方形A′B′C′D′.在旋转过程中,正方形ABCD扫过的面积是 . (结果保留π)
三、解答题
-
15. 先化简,再求值:(1+x)(1﹣x)+x(x+2)﹣1,其中x= .16. 如图所示的两台天平保持平衡,已知每块巧克力的质量相等,且每个果冻的质量也相等.求每块巧克力和每个果冻的质量.17. 在一个不透明的袋子中,装有2个红球和1个白球,这些球除了颜色外都相同.如果第一次随机摸出一个小球(不放回),充分搅匀后,第二次再从剩余的两球中随机摸出一个小球,求两次都摸到红球的概率.(用树状图或列表法求解)18. 如图,已知△ABC中,AB=AC,把△ABC绕A点顺时针方向旋转得到△ADE,连接BD,CE交于点F,求证:△AEC≌△ADB.
四、解答题
-
19. 如图所示,网格中每个小正方形的边长为1,请你认真观察图(1)中的三个网格中阴影部分构成的图案,解答下列问题:(1)、这三个图案都具有以下共同特征:都是对称图形,都不是对称图形.(2)、请在图(2)中设计出一个面积为4,且具备上述特征的图案,要求所画图案不能与图(1)中所给出的图案相同.20. 为了解某市12000名初中学生的视力情况,该校数学兴趣小组从该市七、八、九年级各随机抽取了100名学生进行调查,整理他们的视力情况数据,得到如下的折线统计图.(1)、由统计图可以看出年级越高视力不良率越(填“高”或“低”);(2)、抽取的八年级学生中,视力不良的学生有名;(3)、请你根据抽样调查的结果,估计该市12000名初中学生中视力不良的人数是多少?21. 保护视力要求人写字时眼睛和笔端的距离应超过30cm,图1是一位同学的坐姿,把他的眼睛B,肘关节C和笔端A的位置关系抽象成图2的△ABC,已知BC=30cm,AC=22cm,∠ACB=53°,他的这种坐姿符合保护视力的要求吗?请说明理由.(参考数据:sin53°≈0.8,cos53°≈0.6,tan53°≈1.3)22.
如图,在平面直角坐标系中有Rt△ABC,已知∠CAB=90°,AB=AC,A(﹣2,0),B(0,1).
(1)、点C的坐标是;(2)、将△ABC沿x轴正方向平移得到△A′B′C′,且B,C两点的对应点B′,C′恰好落在反比例函数y= 的图象上,求该反比例函数的解析式.五、解答题
-
23. 如图,⊙O的直径AB=4,C是⊙O上一点,连接OC.过点C作CD⊥AB,垂足为D,过点B作BM∥OC,在射线BM上取点E,使BE=BD,连接CE.(1)、当∠COB=60°时,直接写出阴影部分的面积;(2)、求证:CE是⊙O的切线.24. 某商场为了迎接“6.1儿童节“,以调低价格的方式促销n个不同的玩具,调整后的单价y(元)与调整前的单价x(元)满足一次函数关系,如表:
第1个
第2个
第3个
第4个
…
第n个
调整前单价x (元)
x1
x2=6
x3=72
x4
…
xn
调整后单价y (元)
y1
y2=4
y3=59
y4
…
yn
当这些玩具调整后的单价都大于2元时,解答下列问题:
(1)、y与x的函数关系式为,x的取值范围为;(2)、某个玩具调整前单价是108元,顾客购买这个玩具省了元;(3)、这n个玩具调整前、后的平均单价分别为 (元)、 (元),猜想 与 的关系式,并写出推导过程.六、解答题
-
25.
如图,点A、B的坐标分别为(4,0)、(0,8),点C是线段OB上一动点,点E在x轴正半轴上,四边形OEDC是矩形,且OE=2OC.设OE=t(t>0),矩形OEDC与△AOB重合部分的面积为S.
根据上述条件,回答下列问题:
(1)、当矩形OEDC的顶点D在直线AB上时,求t的值;(2)、当t=4时,求S的值;(3)、直接写出S与t的函数关系式(不必写出解题过程);(4)、若S=12,则t= .26.问题情景:
如图,在直角坐标系xOy中,点A、B为二次函数y=ax2(a>0)图象上的两点,且点A、B的横坐标分别为m、n(m>n>0),连接OA、AB、OB.设△AOB的面积为S时,解答下列问题:
(1)、探究:当a=1时,mn
m﹣n
S
m=3,n=1
3
2
m=5,n=2
10
3
当a=2时,
2mn
m﹣n
S
m=3,n=1
6
2
m=5,n=2
20
3
(2)、归纳证明:对任意m、n(m>n>0),猜想S=(用a,m,n表示),并证明你的猜想.(3)、拓展应用:若点A、B的横坐标分别为m、n(m>0>n),其它条件不变时,△AOB的面积S=(用a,m,n表示).