2011年江苏省无锡市中考数学试卷

试卷更新日期:2017-05-18 类型:中考真卷

一、选择题

  • 1. |﹣3|的值等于(   )
    A、3 B、﹣3 C、±3 D、3
  • 2. 若a>b,则(   )
    A、a>﹣b B、a<﹣b C、﹣2a>﹣2b D、﹣2a<﹣2b
  • 3. 分解因式2x2﹣4x+2的最终结果是(   )
    A、2x(x﹣2) B、2(x2﹣2x+1) C、2(x﹣1)2 D、(2x﹣2)2
  • 4. 已知圆锥的底面半径为2cm,母线长为5cm,则圆锥的侧面积是(   )
    A、20cm2 B、20πcm2 C、10πcm2 D、5πcm2
  • 5. 菱形具有而矩形不一定具有的性质是(   )
    A、对角线互相垂直 B、对角线相等 C、对角线互相平分 D、对角互补
  • 6. 一名同学想用正方形和圆设计一个图案,要求整个图案关于正方形的某条对角线对称,那么下列图案中不符合要求的是(   )
    A、 B、 C、 D、
  • 7. 如图,四边形ABCD的对角线AC、BD相交于O,且将这个四边形分成①、②、③、④四个三角形.若OA:OC=OB:OD,则下列结论中一定正确的是(   )

    A、①与②相似 B、①与③相似 C、①与④相似 D、②与④相似
  • 8. 100名学生进行20秒钟跳绳测试,测试成绩统计如下表:

    跳绳个数x

    20<x≤30

    30<x≤40

    40<x≤50

    50<x≤60

    60<x≤70

    x>70

    人数

    5

    2

    13

    31

    23

    26

    则这次测试成绩的中位数m满足(   )

    A、40<m≤50 B、50<m≤60 C、60<m≤70 D、m>70
  • 9. 下列二次函数中,图象以直线x=2为对称轴、且经过点(0,1)的是(   )
    A、y=(x﹣2)2+1 B、y=(x+2)2+1   C、y=(x﹣2)2﹣3 D、y=(x+2)2﹣3
  • 10. 如图,抛物线y=x2+1与双曲线y= kx 的交点A的横坐标是1,则关于x的不等式 kx +x2+1<0的解集是(   )

    A、x>1 B、x<﹣1 C、0<x<1 D、﹣1<x<0

二、填空题

  • 11. 计算: 83 =

  • 12. 我市去年约有50 000人参加中考,这个数据用科学记数法可表示为人.

  • 13. 在函数 y=x4 中,自变量x的取值范围是

  • 14. 写出一个大于1且小于2的无理数
  • 15. 正五边形的每一个内角都等于°.
  • 16. 如图,在Rt△ABC中,∠ACB=90°,D、E、F分别是AB、BC、CA的中点,若CD=5cm,则EF=cm.

  • 17. 如图,在△ABC中,AB=5cm,AC=3cm,BC的垂直平分线分别交AB、BC于D、E,则△ACD的周长为 cm.

  • 18. 如图,以原点O为圆心的圆交x轴于A、B两点,交y轴的正半轴于点C,D为第一象限内⊙O上的一点,若∠DAB=20°,则∠OCD=°.

三、解答题

  • 19. 计算:
    (1)、(1)216+(2)0
    (2)、a(a﹣3)+(2﹣a)(2+a).
  • 20.
    (1)、解方程:x2+4x﹣2=0;
    (2)、解不等式组 {2x1>xx312x1
  • 21. 如图,在▱ABCD中,E、F为对角线BD上的两点,且∠BAE=∠DCF.求证:BE=DF.

  • 22. 一不透明的袋子中装有4个球,它们除了上面分别标有的号码1、2、3、4不同外,其余均相同.将小球搅匀,并从袋中任意取出一球后放回;再将小球搅匀,并从袋中再任意取出一球.求第二次取出球的号码比第一次的大的概率.(请用“画树状图”或“列表”的方法给出分析过程,并写出结果)
  • 23. 某区共有甲、乙、丙三所高中,所有高二学生参加了一次数学测试.老师们对其中的一道题进行了分析,把每个学生的解答情况归结为下列四类情况之一:A﹣﹣概念错误;B﹣﹣计算错误;C﹣﹣解答基本正确,但不完整;D﹣﹣解答完全正确.各校出现这四类情况的人数分别占本校高二学生数的百分比如下表所示.


    A

    B

    C

    D

    甲校(%)

    2.75

    16.25

    60.75

    20.25

    乙校(%)

    3.75

    22.50

    41.25

    32.50

    丙校(%)

    12.50

    6.25

    22.50

    58.75

    已知甲校高二有400名学生,这三所学校高二学生人数的扇形统计图如图.

    根据以上信息,解答下列问题:

    (1)、求全区高二学生总数;
    (2)、求全区解答完全正确的学生数占全区高二学生总数的百分比m(精确到0.01%);
    (3)、请你对表中三校的数据进行对比分析,给丙校高二数学老师提一个值得关注的问题,并说明理由.
  • 24.

    如图,一架飞机由A向B沿水平直线方向飞行,在航线AB的正下方有两个山头C、D.飞机在A处时,测得山头C、D在飞机的前方,俯角分别为60°和30°.飞机飞行了6千米到B处时,往后测得山头C的俯角为30°,而山头D恰好在飞机的正下方.求山头C、D之间的距离.

  • 25. 张经理到老王的果园里一次性采购一种水果,他俩商定:张经理的采购价y(元/吨)与采购量x(吨)之间函数关系的图象如图中的折线段ABC所示(不包含端点A,但包含端点C).

    (1)、求y与x之间的函数关系式;
    (2)、已知老王种植水果的成本是2 800元/吨,那么张经理的采购量为多少时,老王在这次买卖中所获的利润w最大?最大利润是多少?
  • 26. 如图,等腰梯形MNPQ的上底长为2,腰长为3,一个底角为60°.正方形ABCD的边长为1,它的一边AD在MN上,且顶点A与M重合.现将正方形ABCD在梯形的外面沿边MN、NP、PQ进行翻滚,翻滚到有一个顶点与Q重合即停止滚动.

    (1)、请在所给的图中,用尺规画出点A在正方形整个翻滚过程中所经过的路线图;
    (2)、求正方形在整个翻滚过程中点A所经过的路线与梯形MNPQ的三边MN、NP、PQ所围成图形的面积S.
  • 27. 如图,已知O(0,0)、A(4,0)、B(4,3).动点P从O点出发,以每秒3个单位的速度,沿△OAB的边OA、AB、BO作匀速运动;动直线l从AB位置出发,以每秒1个单位的速度向x轴负方向作匀速平移运动.若它们同时出发,运动的时间为t秒,当点P运动到O时,它们都停止运动.

    (1)、当P在线段OA上运动时,求直线l与以P为圆心、1为半径的圆相交时t的取值范围;
    (2)、当P在线段AB上运动时,设直线l分别与OA、OB交于C、D,试问:四边形CPBD是否可能为菱形?若能,求出此时t的值;若不能,请说明理由,并说明如何改变直线l的出发时间,使得四边形CPBD会是菱形.
  • 28. 十一届全国人大常委会第二十次会议审议的个人所得税法修正案草案(简称“个税法草案”),拟将现行个人所得税的起征点由每月2000元提高到3000元,并将9级超额累进税率修改为7级,两种征税方法的1~5级税率情况见下表:

    税级

    现行征税方法

    草案征税方法

    月应纳税额x

    税率

    速算扣除数

    月应纳税额x

    税率

    速算扣除数

    1

    x≤500

    5%

    0

    x≤1500

    5%

    0

    2

    500<x≤2000

    10%

    25

    1500<x≤4500

    10%

          

    3

    2000<x≤5000

    15%

    125

    4500<x≤9000

    20%

          

    4

    5000<x≤20000

    20%

    375

    9000<x≤35000

    25%

    975

    5

    20000<x≤40000

    25%

    1375

    35000<x≤55000

    30%

    2725

    注:“月应纳税额”为个人每月收入中超出起征点应该纳税部分的金额.

    “速算扣除数”是为快捷简便计算个人所得税而设定的一个数.

    例如:按现行个人所得税法的规定,某人今年3月的应纳税额为2600元,他应缴税款可以用下面两种方法之一来计算:

    方法一:按1~3级超额累进税率计算,即500×5%+1500×10%+600×15%=265(元).

    方法二:用“月应纳税额x适用税率﹣速算扣除数”计算,即2600×15%﹣125=265(元).

    (1)、请把表中空缺的“速算扣除数”填写完整;

    (2)、甲今年3月缴了个人所得税1060元,若按“个税法草案”计算,则他应缴税款多少元?

    (3)、乙今年3月缴了个人所得税3千多元,若按“个税法草案”计算,他应缴的税款恰好不变,那么乙今年3月所缴税款的具体数额为多少元?