2014年浙江省绍兴市中考数学试卷

试卷更新日期:2017-04-24 类型:中考真卷

一、选择题

  • 1. 比较﹣3,1,﹣2的大小,下列判断正确的是(   )
    A、﹣3<﹣2<1 B、﹣2<﹣3<1 C、1<﹣2<﹣3 D、1<﹣3<﹣2
  • 2. 计算(ab)2的结果是(   )
    A、2ab B、a2b C、a2b2 D、ab2
  • 3. 太阳的温度很高,其表面温度大概有6 000℃,而太阳中心的温度达到了19 200 000℃,用科学记数法可将19 200 000表示为(   )
    A、1.92×106 B、1.92×107 C、1.92×108 D、1.92×109
  • 4. 由5个相同的立方体搭成的几何体如图所示,则它的主视图是(   )

    A、 B、 C、 D、
  • 5. 一个不透明的袋子中有2个白球,3个黄球和1个红球,这些球除颜色不同外其他完全相同,则从袋子中随机摸出一个球是白球的概率为(   )
    A、16 B、14 C、13 D、12
  • 6. 不等式3x+2>﹣1的解集是(   )
    A、x>﹣ 13 B、x<﹣ 13 C、x>﹣1 D、x<﹣1
  • 7. 如图,圆锥的侧面展开图是半径为3,圆心角为90°的扇形,则该圆锥的底面周长为(   )

    A、34 π B、32 π C、34 D、32
  • 8. 如图1,天平呈平衡状态,其中左侧秤盘中有一袋玻璃球,右侧秤盘中也有一袋玻璃球,还有2个各20克的砝码.现将左侧袋中一颗玻璃球移至右侧秤盘,并拿走右侧秤盘的1个砝码后,天平仍呈平衡状态,如图2,则被移动的玻璃球的质量为(   )

    A、10克 B、15克 C、20克 D、25克
  • 9. 将一张正方形纸片,按如图步骤①,②,沿虚线对折两次,然后沿③中的虚线剪去一个角,展开铺平后的图形是(   )

    A、 B、 C、 D、
  • 10. 如图,汽车在东西向的公路l上行驶,途中A,B,C,D四个十字路口都有红绿灯.AB之间的距离为800米,BC为1000米,CD为1400米,且l上各路口的红绿灯设置为:同时亮红灯或同时亮绿灯,每次红(绿)灯亮的时间相同,红灯亮的时间与绿灯亮的时间也相同.若绿灯刚亮时,甲汽车从A路口以每小时30千米的速度沿l向东行驶,同时乙汽车从D路口以相同的速度沿l向西行驶,这两辆汽车通过四个路口时都没有遇到红灯,则每次绿灯亮的时间可能设置为(   )

    A、50秒 B、45秒 C、40秒 D、35秒

二、填空题

  • 11. 分解因式:a2﹣a=

  • 12. 把球放在长方体纸盒内,球的一部分露出盒外,其主视图如图.⊙O与矩形ABCD的边BC,AD分别相切和相交(E,F是交点),已知EF=CD=8,则⊙O的半径为

  • 13. 如图的一座拱桥,当水面宽AB为12m时,桥洞顶部离水面4m,已知桥洞的拱形是抛物线,以水平方向为x轴,建立平面直角坐标系,若选取点A为坐标原点时的抛物线解析式是y=﹣ 19 (x﹣6)2+4,则选取点B为坐标原点时的抛物线解析式是

  • 14. 用直尺和圆规作△ABC,使BC=a,AC=b,∠B=35°,若这样的三角形只能作一个,则a,b间满足的关系式是
  • 15. 如图,边长为n的正方形OABC的边OA,OC在坐标轴上,点A1 , A2 , …,An1为OA的n等分点,点B1 , B2 , …,Bn1为CB的n等分点,连结A1B1 , A2B2 , …,An1Bn1 , 分别交曲线y= n2x (x>0)于点C1 , C2 , …,Cn1 . 若C15B15=16C15A15 , 则n的值为 . (n为正整数)

  • 16. 把标准纸一次又一次对开,可以得到均相似的“开纸”.现在我们在长为2 2 、宽为1的矩形纸片中,画两个小矩形,使这两个小矩形的每条边都与原矩形纸的边平行,或小矩形的边在原矩形的边上,且每个小矩形均与原矩形纸相似,然后将它们剪下,则所剪得的两个小矩形纸片周长之和的最大值是

三、解答题

  • 17. 计算下列各题
    (1)、计算: (12)1 ﹣4sin45°﹣ (12)0  + 8
    (2)、先化简,再求值:a(a﹣3b)+(a+b)2﹣a(a﹣b),其中a=1,b=﹣ 12
  • 18. 已知甲、乙两地相距90km,A,B两人沿同一公路从甲地出发到乙地,A骑摩托车,B骑电动车,图中DE,OC分别表示A,B离开甲地的路程s(km)与时间t(h)的函数关系的图象,根据图象解答下列问题.

    (1)、A比B后出发几个小时?B的速度是多少?
    (2)、在B出发后几小时,两人相遇?
  • 19.

    为了解某校七,八年级学生的睡眠情况,随机抽取了该校七,八年级部分学生进行调查,已知抽取七年级与八年级的学生人数相同,利用抽样所得的数据绘制如下统计图表.


                      睡眠情况分组表(单位:时)

    组别

    睡眠时间x

    A

    x≤7.5

    B

    7.5≤x≤8.5

    C

    8.5≤x≤9.5

    D

    9.5≤x≤10.5

    E

    x≥10.5

    根据图表提供的信息,回答下列问题:

    (1)、求统计图中的a;

    (2)、抽取的样本中,八年级学生睡眠时间在C组的有多少人?

    (3)、已知该校七年级学生有755人,八年级学生有785人,如果睡眠时间x(时)满足:7.5≤x≤9.5,称睡眠时间合格,试估计该校七、八年级学生中睡眠时间合格的共有多少人?

  • 20. 课本中有一道作业题:

    有一块三角形余料ABC,它的边BC=120mm,高AD=80mm.要把它加工成正方形零件,使正方形的一边在BC上,其余两个顶点分别在AB,AC上.问加工成的正方形零件的边长是多少mm?

    小颖解得此题的答案为48mm,小颖善于反思,她又提出了如下的问题.

    (1)、如果原题中要加工的零件是一个矩形,且此矩形是由两个并排放置的正方形所组成,如图1,此时,这个矩形零件的两条边长又分别为多少mm?请你计算.
    (2)、如果原题中所要加工的零件只是一个矩形,如图2,这样,此矩形零件的两条边长就不能确定,但这个矩形面积有最大值,求达到这个最大值时矩形零件的两条边长.
  • 21.

    九(1)班同学在上学期的社会实践活动中,对学校旁边的山坡护墙和旗杆进行了测量.

    (1)、如图1,第一小组用一根木条CD斜靠在护墙上,使得DB与CB的长度相等,如果测量得到∠CDB=38°,求护墙与地面的倾斜角α的度数.

    (2)、如图2,第二小组用皮尺量的EF为16米(E为护墙上的端点),EF的中点离地面FB的高度为1.9米,请你求出E点离地面FB的高度.

    (3)、如图3,第三小组利用第一、第二小组的结果,来测量护墙上旗杆的高度,在点P测得旗杆顶端A的仰角为45°,向前走4米到达Q点,测得A的仰角为60°,求旗杆AE的高度(精确到0.1米).

    备用数据:tan60°=1.732,tan30°=0.577, 3  =1.732, 2  =1.414.

  • 22. 如果二次函数的二次项系数为l,则此二次函数可表示为y=x2+px+q,我们称[p,q]为此函数的特征数,如函数y=x2+2x+3的特征数是[2,3].
    (1)、若一个函数的特征数为[﹣2,1],求此函数图象的顶点坐标.
    (2)、探究下列问题:

    ①若一个函数的特征数为[4,﹣1],将此函数的图象先向右平移1个单位,再向上平移1个单位,求得到的图象对应的函数的特征数.

    ②若一个函数的特征数为[2,3],问此函数的图象经过怎样的平移,才能使得到的图象对应的函数的特征数为[3,4]?

  • 23.

    (1)、如图1,正方形ABCD中,点E,F分别在边BC,CD上,∠EAF=45°,延长CD到点G,使DG=BE,连结EF,AG.求证:EF=FG.
    (2)、如图,等腰直角三角形ABC中,∠BAC=90°,AB=AC,点M,N在边BC上,且∠MAN=45°,若BM=1,CN=3,求MN的长.
  • 24. 如图,在平面直角坐标系中,直线l平行x轴,交y轴于点A,第一象限内的点B在l上,连结OB,动点P满足∠APQ=90°,PQ交x轴于点C.

    (1)、当动点P与点B重合时,若点B的坐标是(2,1),求PA的长.
    (2)、当动点P在线段OB的延长线上时,若点A的纵坐标与点B的横坐标相等,求PA:PC的值.
    (3)、当动点P在直线OB上时,点D是直线OB与直线CA的交点,点E是直线CP与y轴的交点,若∠ACE=∠AEC,PD=2OD,求PA:PC的值.