2017年吉林省吉林市高考数学三模试卷(理科)
试卷更新日期:2017-04-20 类型:高考模拟
一、选择题
-
1. 设全集U=R,集合A={x|x>1},集合B={x|x>p},若(∁UA)∩B=∅,则p应该满足的条件是( )A、p>1 B、p≥1 C、p<1 D、p≤12. 已知复数z= ,其中i为虚数单位,则|z|=( )A、 B、 C、 D、23. 已知向量 =(x,2), =(2,1), =(3,x),若 ∥ ,则 • =( )A、4 B、8 C、12 D、204. 已知点F(2,0)是双曲线3x2﹣my2=3m(m>0)的一个焦点,则此双曲线的离心率为( )A、 B、 C、2 D、45. 的展开式中,各项系数之和为A,各项的二项式系数之和为B,若 =32,则n=( )A、5 B、6 C、7 D、86. 给出下列几个命题:
①命题p:任意x∈R,都有cosx≤1,则¬p:存在x0∈R,使得cosx0≤1
②命题“若a>2且b>2,则a+b>4且ab>4”的逆命题为假命题
③空间任意一点O和三点A,B,C,则 =3 =2 是A,B,C三点共线的充分不必要条件
④线性回归方程y=bx+a对应的直线一定经过其样本数据点(x1 , y1),(x2 , y2),…,(xn , yn)中的一个
其中不正确的个数为( )
A、1 B、2 C、3 D、47. 若直角坐标平面内的两点P,Q满足条件:①P,Q都在函数y=f(x)的图象上;②P,Q关于原点对称,则称点对(P,Q)是函数y=f(x)的一对“友好点对”(点对(P,Q)与(Q,P)看作同一对“友好点对”).已知函数f(x)= ,则此函数的“友好点对”有( )A、3对 B、2对 C、1对 D、0对8. 2002年在北京召开的国际数学家大会,会标是以我国古代数学家赵爽的弦图为基础设计的.弦图是由四个全等直角三角形与一个小正方形拼成的一个大正方形(如图).如果小正方形的面积为1,大正方形的面积为25,直角三角形中较小的锐角为θ,那么sin2θ的值为( )A、 B、 C、 D、9. 阅读程序框图,运行相应的程序,则输出i的值为( )A、3 B、4 C、5 D、610. 中国有个名句“运筹帷幄之中,决胜千里之外.”其中的“筹”原意是指《孙子算经》中记载的算筹,古代是用算筹来进行计算,算筹是将几寸长的小竹棍摆在平面上进行运算,算筹的摆放形式有纵横两种形式(如下图所示),表示一个多位数时,像阿拉伯计数一样,把各个数位的数码从左到右排列,但各位数码的筹式需要纵横相间,个位,百位,万位数用纵式表示,十位,千位,十万位用横式表示,以此类推.例如6613用算筹表示就是 ,则9117用算筹可表示为( )A、 B、 C、 D、11. 已知数列{an}的各项均为正整数,其前n项和为Sn , an+1= ,若S3=10,则S180=( )A、600或900 B、900或560 C、900 D、60012. 定义在区间D上的函数f(x)和g(x),如果对任意x∈D,都有|f(x)﹣g(x)|≤1成立,则称f(x)在区间D上可被g(x)替代,D称为“替代区间”.给出以下问题:①f(x)=x2+1在区间(﹣∞,+∞)上可被g(x)=x2+ 替代;
②如果f(x)=lnx在区间[1,e]可被g(x)=x﹣b替代,则﹣2≤b≤2;
③设f(x)=lg(ax2+x)(x∈D1),g(x)=sinx(x∈D1),则存在实数a(a≠0)及区间D1 , D2 , 使得f(x)在区间D1∩D2上被g(x)替代.
其中真命题是( )
A、①②③ B、②③ C、① D、①②二、填空题
-
13. 设x,y满足不等式组 ,则z=﹣2x+y的最小值为14. 已知等差数列{an}中,a5+a7= ,则a4+a6+a8=15.
某几何体的三视图如图所示,且该几何体的体积为2,则正视图的面积=
16. 已知A,B是椭圆 =1和双曲线 =1的公共顶点,其中a>b>0,P是双曲线上的动点,M是椭圆上的动点(P,M都异于A,B),且满足 =λ( )(λ∈R),设直线AP,BP,AM,BM的斜率分别为k1 , k2 , k3 , k4 , 若k1+k2= ,则k3+k4= .三、解答题
-
17. 已知函数f(x)=cos2x+2sin2x+2sinx.
(Ⅰ)将函数f(2x)的图象向右平移 个单位得到函数g(x)的图象,若x∈[ , ],求函数g(x)的值域;
(Ⅱ)已知a,b,c分别为△ABC中角A,B,C的对边,且满足f(A)= +1,A∈(0, ),a=2 ,b=2,求△ABC的面积.
18. 据《中国新闻网》10月21日报道,全国很多省市将英语考试作为高考改革的重点,一时间“英语考试该如何改”引起广泛关注.为了解某地区学生和包括老师、家长在内的社会人士对高考英语改革的看法,某媒体在该地区选择了3600人调查,就是否“取消英语听力”的问题,调查统计的结果如下表:态度
调查人群
应该取消
应该保留
无所谓
在校学生
2100人
120人
y人
社会人士
600人
x人
z人
已知在全体样本中随机抽取1人,抽到持“应该保留”态度的人的概率为0.05.
(Ⅰ)现用分层抽样的方法在所有参与调查的人中抽取360人进行问卷访谈,问应在持“无所谓”态度的人中抽取多少人?
(Ⅱ)在持“应该保留”态度的人中,用分层抽样的方法抽取6人平均分成两组进行深入交流,求第一组中在校学生人数ξ的分布列和数学期望.
19.已知四棱锥P﹣ABCD中,底面为矩形,PA⊥底面ABCD,PA=BC=1,AB=2,M为PC中点.
(Ⅰ)在图中作出平面ADM与PB的交点N,并指出点N所在位置(不要求给出理由);
(Ⅱ)在线段CD上是否存在一点E,使得直线AE与平面ADM所成角的正弦值为 ,若存在,请说明点E的位置;若不存在,请说明理由;
(Ⅲ)求二面角A﹣MD﹣C的余弦值.
20. 已知O为坐标原点,抛物线C:y2=nx(n>0)在第一象限内的点P(2,t)到焦点的距离为 ,曲线C在点P处的切线交x轴于点Q,直线l1经过点Q且垂直于x轴.(Ⅰ)求线段OQ的长;
(Ⅱ)设不经过点P和Q的动直线l2:x=my+b交曲线C于点A和B,交l1于点E,若直线PA,PE,PB的斜率依次成等差数列,试问:l2是否过定点?请说明理由.
21. 已知函数f(x)=x2﹣(a+2)x+alnx,其中常数a>0.(Ⅰ)当a>2时,求函数f(x)的单调递增区间;
(Ⅱ)设定义在D上的函数y=h(x)在点P(x0 , h(x0))处的切线方程为l:y=g(x),若 >0在D内恒成立,则称P为函数y=h(x)的“类对称点”.当a=4时,试问y=f(x)是否存在“类对称点”,若存在,请至少求出一个“类对称点”的横坐标;若不存在,请说明理由.
22. 选修4-4:坐标系与参数方程以直角坐标系xOy的原点为极点,x轴的非负半轴为极轴建立极坐标系,且两坐标系相同的长度单位.已知点N的极坐标为( , ),M是曲线C1:ρ=1上任意一点,点G满足 ,设点G的轨迹为曲线C2 .
(1)、求曲线C2的直角坐标方程;(2)、若过点P(2,0)的直线l的参数方程为 (t为参数),且直线l与曲线C2交于A,B两点,求 的值.23. 选修4-5:不等式选讲已知定义在R上的函数f(x)=|x﹣m|+|x|,m∈N* , 存在实数x使f(x)<2成立.
(Ⅰ)求实数m的值;
(Ⅱ)若α,β>1,f(α)+f(β)=2,求证: + ≥ .