湖北省丹江口市2017-2018学年七年级上学期数学期中考试试卷

试卷更新日期:2018-12-24 类型:期中考试

一、单选题

  • 1. -3的绝对值是(  )
    A、3 B、-3 C、 D、
  • 2. 下面四个数3,0,-9,-3中,最小的数是(   )
    A、3 B、0 C、-9 D、-3
  • 3. 地球绕太阳公转的速度约是110000千米/时,将110000用科学记数法表示为(   )

    A、11×104 B、1.1×104 C、1.1×105 D、0.11×106
  • 4. 在数轴上有两个点A,B,点A表示-3,点B与点A相距5个单位长度,则点B表示的数为(    ).


    A、-2或8 B、2或-8 C、-2 D、-8
  • 5. 若|a|=a,则a一定是(   )
    A、非负数 B、负数 C、正数 D、
  • 6. 下列运算正确的是(   )
    A、2a+3b=5a+b B、2a―3b=―(a-b) C、2a2b―2ab2=0 D、3ab―3ba=0
  • 7. 如果 13 xa+3y3与―5x4y2b-1是同类项,那么a,b的值分别是(   )
    A、a=1,b=2 B、a=0,b=2 C、a=2,b=1 D、a=1,b=1
  • 8. 已知x=1是方程x+2a=-1的解,那么a的值是(  )
    A、-1 B、0 C、1 D、2
  • 9. 下列各式运用等式的性质变形,错误的是(    )
    A、若-a=-b,则a=b B、 ,则a=b C、若ac=bc,则a=b D、若(m2+1)a=(m2+1)b,则a=b
  • 10. 如图是某月的日历表,在此日历表上可以用一个矩形圈出3×3个位置的9个数(如6,7,8,13,14,15,20,21,22).若用这样的矩形圈圈这张日历表的9个数,则圈出的9个数的和可能为下列数中的(    )

    A、81 B、100 C、108 D、216

二、填空题

  • 11. 如果水位升高3m时水位变化记作+3m,那么水位下降1m时水位变化记作:m.
  • 12. 某地某天的最高气温为3℃,最低气温为﹣8℃,这天的温差是℃.
  • 13. 近似数1.60亿精确到位.
  • 14. 已知当x=-2时,多项式ax3+bx+1的值为9,则当x=2时,多项式ax3+bx+13的值为
  • 15. 某班图书柜里有书若干本,该班阅读兴趣小组有x人,若每人4本还余9本,若每人5本还差3本,依题意列方程为
  • 16. 如图,用灰白两色正方形瓷砖铺设地面,第n个图案中白色瓷砖数为

三、解答题

  • 17. 计算
    (1)、(13712+341115)×(60)
    (2)、24÷(2)3+(18)÷(12)4[1(3)2]
  • 18. 化简
    (1)、-3x2y+3xy2+2x2y-2xy2
    (2)、4x2[32x(12x1)+3x2]
  • 19. 解方程
    (1)、5x-1=x+1
    (2)、2x+3(2x-1)=16-(x+1)
  • 20. 某一出租车一天下午以新合作超市为出发地在东西方向营运,向东为正,向西为负,行车里程(单位km),依先后次序记录如下:+7,-4,-6,+4,-8,+6,-3,-7,-5,+10.
    (1)、将最后一名乘客送到目的地,出租车离出发点多远?在新合作的什么方向?
    (2)、若每千米按2.4元收费,该司机一个下午的收入多少?
  • 21. 已知数a在数轴上表示的点在原点左侧,距离原点3个单位长,b在数轴上表示的点在原点右侧,距离原点2个单位长,c和d互为倒数,m与n互为相反数,y为最大的负整数,求(y+b)2+m(a-cd)-nb2的值.
  • 22. 某校一栋5层的教学大楼,第一层没有教室,二至五层,每层楼有6间教室,进出这栋大楼共有两道大小相同的大门和一道小门(平时小门不开).安全检查中,对这3道门进行了测试:当同时开启一道大门和一道小门时,3分钟内可以通过540名学生,若一道大门平均每分钟比一道小门可多通过60名学生.

    学生,问:在紧急情况下只开启两道大门是否可行?为什么?3道门都开启呢?

    (1)、求平均每分钟一道大门和一道小门各可以通过多少名学生?
    (2)、检查中发现,紧急情况时因学生拥挤,出门的效率降低20%.安全检查规定:在紧急情况下全大楼的学生应在5分钟内安全撤离.这栋教学大楼每间教室平均有45名学生,问:在紧急情况下只开启两道大门是否可行?为什么?3道门都开启呢?
  • 23.    
    (1)、一个两位数A,十位数字为a,个位数字为b,交换a和b的位置,得到一个新的两位数B,则A+B一定能被整除,A-B一定能被整除;
    (2)、一个三位数M,百位数字为a,十位数字为b,个位数字为c(a,b,c均为1至9的整数),交换a和c的位置,得到一个新的三位数N.请用含a、b、c的式子分别表示数N与M-N;
    (3)、若(2)中a比b大1,M比N大792,求M.
  • 24. 已知:a、b、c满足a=-b,|a+1|+(c-4)2=0,请回答问题:
    (1)、请求出a、b、c的值;
    (2)、a、b、c所对应的点分别为A、B、C,P为数轴上一动点,其对应的数为x,若点P在线段BC上时,请化简式子:|x+1|-|1-x|+2|x-4|(请写出化简过程);

    (3)、若点P从A点出发,以每秒2个单位长度的速度向右运动,试探究当点P运动多少秒时,PC=3PB?