2015-2016学年福建省泉州市五校联考高二下学期期中数学试卷(理科)

试卷更新日期:2017-03-23 类型:期中考试

一、选择题:

  • 1. 若复数 2ai1+i (a∈R)是纯虚数,i是虚数单位,则a的值是(   )
    A、2 B、1 C、﹣1 D、﹣2
  • 2. 从一批产品中取出三件产品,设A表示事件“三件产品全不是次品”,B表示事件“三件产品全是次品”,C表示事件“三件产品至少有一件是次品”,则下列结论正确的是(   )
    A、事件A与C互斥 B、任何两个事件均互斥 C、事件B与C互斥 D、任何两个事件均不互斥
  • 3. 某品牌空调在元旦期间举行促销活动,所示的茎叶图表示某专卖店记录的每天销售量情况(单位:台),则销售量的中位数是(   )

    A、13 B、14 C、15 D、16
  • 4. 如表提供了某厂节能降耗技术改造后在生产A产品过程中记录的产量x(吨)与相应的生产能耗y(吨)的几组对应数据,根据表提供的数据,求出y关于x的线性回归方程为 y^ =0.7x+0.35,则下列结论错误的是(   )

    x

    3

    4

    5

    6

    y

    2.5

    t

    4

    4.5

    A、产品的生产能耗与产量呈正相关 B、t的取值必定是3.15 C、回归直线一定过点(4,5,3,5) D、A产品每多生产1吨,则相应的生产能耗约增加0.7吨
  • 5. 在平面直角坐标系xOy中,满足x2+y2≤1,x≥0,y≥0的点P(x,y)的集合对应的平面图形的面积为 π4 ;类似的,在空间直角坐标系O﹣xyz中,满足x2+y2+z2≤1,x≥0,y≥0,z≥0的点P(x,y,z)的集合对应的空间几何体的体积为(   )
    A、π8 B、π6 C、π4 D、π3
  • 6. 有这样一段演绎推理“有些有理数是真分数,整数是有理数,则整数是真分数”结论显然是错误的,是因为(  )


    A、大前提错误 B、小前提错误 C、推理形式错误 D、非以上错误
  • 7. 下列说法:

    ①一组数据不可能有两个众数;

    ②一组数据的方差必为正数,且方差越大,数据的离散程度越大;

    ③将一组数据中的每个数都加上同一个常数后,方差恒不变;

    ④在频率分布直方图中,每个长方形的面积等于相应小组的频率.

    其中错误的个数有(   )

    A、0 B、1 C、2 D、3
  • 8. 将一枚骰子投掷两次,所得向上点数分别为m和n,则函数y=mx2﹣nx+1在[1,+∞)上为增函数的概率是(   )
    A、12 B、23 C、34 D、56
  • 9. 某节假日,一校办公室要安排从一号至六号由指定的六个人参加的值班表.要求每人值班一天,但甲与乙不能相邻且丙与丁也不能相邻,则不同的安排方法有(   )种.
    A、336 B、408 C、240 D、264
  • 10. [ n ]表示不超过 n 的最大整数.若

    S1=[ 1 ]+[ 2 ]+[ 3 ]=3,

    S2=[ 4 ]+[ 5 ]+[ 6 ]+[ 7 ]+[ 8 ]=10,

    S3=[ 9 ]+[ 10 ]+[ 11 ]+[ 12 ]+[ 13 ]+[ 14 ]+[ 15 ]=21,

    …,

    则Sn=(   )

    A、n(n+2) B、n(n+3) C、(n+1)2﹣1 D、n(2n+1)
  • 11. 设a,b∈(0,+∞),则a+ 1bb+1a (   )
    A、都不大于2 B、都不小于2 C、至少有一个不大于2 D、至少有一个不小于2
  • 12. 在正方体ABCD﹣A1B1C1D1的各个顶点与各棱的中点共20个点中,任取2点连成直线,在这些直线中任取一条,它与对角线BD1垂直的概率为(   )
    A、27190 B、12166 C、15166 D、27166

二、填空题:

  • 13. 若复数z满足 z2+i =i2015+i2016(i为虚数单位),则|z|=
  • 14. ( 1x ﹣2)(x+1)5展开式中x2项的系数为
  • 15. 已知Q={(x,y)|3x+y≤4,x≥0,y≥0},A={(x,y)|x≤y},若向区域Q内随机投入一点P,则点P落入区域A的概率为
  • 16. 彩票公司每天开奖一次,从1,2,3,4四个号码中随机开出一个作为中奖号码,开奖时如果开出的号码与前一天相同,就要重开,直到开出与前一天不同的号码为止.如果第一天开出的号码是4,则第五天开出的号码也同样是4的概率为

三、解答题:

  • 17. 某城市随机抽取一年(365天)内100天的空气质量指数API的监测数据,结果统计如表:

    API

    [0,50]

    (50,100]

    (100,150]

    (150,200]

    (200,250]

    (250,300]

    >300

    空气质量

    轻微污染

    轻度污染

    中度污染

    中度重污染

    重度污染

    天数

    4

    13

    18

    30

    9

    11

    15

    (1)、若某企业每天由空气污染造成的经济损失S(单位:元)与空气质量指数API(记为ω)的关系式为:

    S= {0,0ω1004ω400,100<ω3002000,ω>300 ,试估计在本年内随机抽取一天,该天经济损失S大于200元且不超过600元的概率;

    (2)、若本次抽取的样本数据有30天是在供暖季,其中有8天为重度污染,完成下面2×2列联表,并判断能否有95%的把握认为该市本年空气重度污染与供暖有关?

    附:

    P(K2≥k0

    0.25

    0.15

    0.10

    0.05

    0.025

    0.010

    0.005

    0.001

    k0

    1.323

    2.072

    2.706

    3.841

    5.024

    6.635

    7.879

    10.828

    k2= n(ad+bc)2(a+b)(c+d)(a+c)(b+d)

    非重度污染

    重度污染

    合计

    供暖季

    非供暖季

    合计

    100

  • 18. 某市政府为了确定一个较为合理的居民用电标准,必须先了解全市居民日常用电量的分布情况.现采用抽样调查的方式,获得了n位居民在2012年的月均用电量(单位:度)数据,样本统计结果如下图表:

    分  组

    频 数

    频 率

    [0,10)

    0.05

    [10,20)

    0.10

    [20,30)

    30

    [30,40)

    0.25

    [40,50)

    0.15

    [50,60]

    15

    合  计

    n

    1

    (1)、求月均用电量的中位数与平均数估计值;
    (2)、如果用分层抽样的方法从这n位居民中抽取8位居民,再从这8位居民中选2位居民,那么至少有1位居民月均用电量在30至40度的概率是多少?
    (3)、用样本估计总体,把频率视为概率,从这个城市随机抽取3位居民(看作有放回的抽样),求月均用电量在30至40度的居民数X的分布列.
  • 19. 已知:sin230°+sin290°+sin2150°= 32

    sin25°+sin265°+sin2125°= 32

    sin212°+sin272°+sin2132°= 32

    通过观察上述两等式的规律,请你写出一般性的命题,并给予的证明.

  • 20. 为贯彻“激情工作,快乐数学”的理念,某学校在学习之余举行趣味知识有奖竞赛,比赛分初赛和决赛两部分,为了增加节目的趣味性,初赛采用选手选一题答一题的方式进行,每位选手最多有5次选答题的机会,选手累计答对3题或答错3题即终止其初赛的比赛,答对3题者直接进入决赛,答错3题者则被淘汰,已知选手甲答题的正确率为 23
    (1)、求选手甲答题次数不超过4次可进入决赛的概率;
    (2)、设选手甲在初赛中答题的个数ξ,试写出ξ的分布列,并求ξ的数学期望.
  • 21. 某联欢晚会举行抽奖活动,举办方设置了甲、乙两种抽奖方案,方案甲的中奖率为 23 ,中奖可以获得2分;方案乙的中奖率为P0(0<P0<1),中奖可以获得3分;未中奖则不得分.每人有且只有一次抽奖机会,每次抽奖中奖与否互不影响,晚会结束后凭分数兑换奖品.

    (Ⅰ)张三选择方案甲抽奖,李四选择方案乙抽奖,记他们的累计得分为X,若X≤3的概率为 79 ,求P0

    (Ⅱ)若张三、李四两人都选择方案甲或都选择方案乙进行抽奖,问:他们选择何种方案抽奖,累计得分的数学期望较大?