浙教版八年级下册第6章 6.3反比例函数的应用 同步练习
试卷更新日期:2017-03-23 类型:同步测试
一、单选题
-
1. 下列函数中,属于反比例函数的有( )A、y= B、y= C、y=8﹣2x D、y=﹣12. 已知k>0,那么函数y=的图象大致是( )A、 B、 C、 D、3. 已知反比例函数y=的图象经过点(2,﹣2),则k的值为( )A、4 B、- C、-4 D、-24. 已知反比例函数y= , 当1<x<3时,y的取值范围是( )A、0<y<l B、1<y<2 C、2<y<6 D、y>65.
如图,点P(﹣3,2)是反比例函数y=(k≠0)的图象上一点,则反比例函数的解析式( )
A、y=- B、y=- C、y=- D、y=-6.已知如图,A是反比例函数y=的图象上的一点,AB丄x轴于点B,且△ABO的面积是3,则k的值是( )
A、3 B、-3 C、6 D、-67. 矩形的面积一定,则它的长和宽的关系是( )A、正比例函数 B、一次函数 C、反比例函数 D、二次函数8. 已知反比例函数的图象经过点P(﹣2,1),则这个函数的图象位于( )A、第一、三象限 B、第二、三象限 C、第二、四象限 D、第三、四象限9. 已知点P(1,﹣3)在反比例函数y=(k≠0)的图象上,则k的值是( )A、3 B、-3 C、 D、-10. 若反比例函数y=的图象经过点(﹣1,2),则这个函数的图象一定经过点( )A、(﹣2,﹣1) B、(﹣ , 2) C、(2,﹣1) D、( , 2)11. 如图,直线y=kx(k>0)与双曲线y=交于A,B两点,BC⊥x轴于C,连接AC交y轴于D,下列结论:①A、B关于原点对称;②△ABC的面积为定值;③D是AC的中点;④S△AOD= . 其中正确结论的个数为( )A、1个 B、2个 C、3个 D、4个12. 已知正比例函数y=kx的图象与反比例函数y= 的图象交于A,B两点,若点A的坐标为(﹣2,1),则关于x的方程 =kx的两个实数根分别为( )A、x1=﹣1,x2=1 B、x1=﹣1,x2=2 C、x1=﹣2,x2=1 D、x1=﹣2,x2=213. 如图,直线y=mx与双曲线y= 交于A,B两点,过点A作AM⊥x轴,垂足为点M,连接BM,若S△ABM=2,则k的值为( )A、﹣2 B、2 C、4 D、﹣414. 如图,点P是x轴正半轴上的一动点,过点P作x轴的垂线,交双曲线y= 于点Q,连接OQ.当点P沿x轴的正方向运动时,Rt△QOP的面积( )A、逐渐增大 B、逐渐减小 C、保持不变 D、无法确定15. 如图,P为反比例函数y= 的图像上一点,PA⊥x轴于点A,△PAO的面积为6,则下列各点中也在这个反比例函数图象上的是( )A、(2,3) B、(﹣2,6) C、( 2,6 ) D、(﹣2,3)二、填空题
-
16. 在温度不变的条件下,一定质量的气体的压强p与它的体积V成反比例,当V=200时,P=50,则当P=25时,V= .17.
如图,反比例函数y=图象上有一点P,PA⊥x轴于点A,点B在y轴的负半轴上,若△PAB的面积为4,则k=
18. 在平面直角坐标系中,直线y=﹣x+2与反比例函数y= 的图象有唯一公共点,若直线y=﹣x+b与反比例函数y= 的图象有2个公共点,则b的取值范围是 .19. 如图所示,设A为反比例函数 图像上一点,且矩形ABOC的面积为3,则这个反比例函数解析式为 .20. 如图,点P、Q是反比例函数y= 图像上的两点,PA⊥y轴于点A,QN⊥x轴于点N,作PM⊥x轴于点M,QB⊥y轴于点B,连接PB、QM,△ABP的面积记为S1 , △QMN的面积记为S2 , 则S1S2 . (填“>”或“<”或“=”)三、解答题
-
21. 已知反比例函数y=的图象与一次函数y=3x+m的图象相交于点(1,5).求这两个函数的解析式.22. 已知一个长方体的体积是100cm3 , 它的长是ycm,宽是10cm,高是xcm.
(1)写出y与x之间的函数关系式;
(2)当x=2cm时,求y的值.
23. 某乡镇要在生活垃圾存放区建一个老年活动中心,这样必须把1200立方米的生活垃圾运走:(1)假如每天能运x立方米,所需时间为y天,写出y与x之间的函数表达式;
(2)若每辆拖拉机一天能运12立方米,则5辆这样的拖拉机要用多少天才能运完?
(3)在(2)的情况下,运了8天后,剩下的任务要在不超过6天的时间内完成,那么至少需要增加多少辆这样的拖拉机才能按时完成任务?
24.如图,已知矩形OABC的两边OA,OC分别在x轴,y轴的正半轴上,且点B(4,3),反比例函数y=图象与BC交于点D,与AB交于点E,其中D(1,3).
(1)求反比例函数的解析式及E点的坐标;
(2)求直线DE的解析式;
(3)若矩形OABC对角线的交点为F (2,),作FG⊥x轴交直线DE于点G.
①请判断点F是否在此反比例函数y=的图象上,并说明理由;
②求FG的长度.
四、综合题
-
25. 病人按规定的剂量服用某种药物,测得服药后2小时,每毫升血液中的含药量达到最大值为4毫克.已知服药后,2小时前每毫升血液中的含药量y(毫克)与时间x(小时)成正比例,2小时后y与x成反比例(如图所示).根据以上信息解答下列问题.(1)、求y与x之间的函数关系式;并写出自变量x的取值范围;(2)、若每毫升血液中的含药量不低于2毫克时治疗有效,那么病人服药一次治疗疾病的有效时间是多长?26. 如图所示是某一蓄水池每小时的排水量V(m3/h)与排完水池中的水所用的时间t(h)之间的函数关系图像.(1)、请你根据图像提供的信息求出此蓄水池的蓄水量;(2)、求出此函数的解析式;(3)、若要6h排完水池中的水,那么每小时的排水量应该是多少?(4)、如果每小时排水量不超过5 000m3 , 那么水池中的水至少要多少小时排完?