广西来宾市忻城县2018届九年级上学期数学期中考试试卷

试卷更新日期:2018-11-21 类型:期中考试

一、单选题

  • 1. 下列函数:① y=x2 ;② y=2x ;③ y=12x ;④ y=2x1 中,是反比例函数的有(   )
    A、1个 B、2个 C、3个 D、4个
  • 2. 已知反比例函数的图象经过点P(-2,4),则此反比例函数的解析式是( )
    A、y=8x B、y=8x C、y=x8 D、y=x8
  • 3. 一元二次方程 3x2=x(2xl) 的一般形式是(   )
    A、2x23x2=0 B、2x2+3x2=0 C、2x24x2=O D、2x24x+2=0
  • 4. 若关于x的一元二次方程 x2+3x+a=0 的一个根是-2,则另一个根为(   )
    A、5 B、-1 C、2 D、-5
  • 5. 一元二次方程2(2-x)(x+3)=9的二次项、一次项、常数项分别是(   )
    A、2 x2 、2x、-3 B、2 x2 、2x、21 C、2、2、-3 D、2、2、21
  • 6. 方程:2 (x+3)2 =8的解是(    )
    A、x1=2x2=2 B、x1=5x2=1 C、x1=1x2=5 D、x1=1x2=7
  • 7. 一元二次方程:2 x2 + 4x +1=0的根的情况是(   )
    A、有两个不相等的实数根 B、有一个实数根 C、有两个相等的实数根 D、没有实数根
  • 8. 已知一元二次方程的两个根是2和-3,则这个一元二次方程是( )
    A、x2+x+6=0 B、x2+x6=0 C、x2x+6=0 D、x2x6=0
  • 9. 已知一元二次方程 x2 -5x-6=0的两根分别为 x1x2 ,则 x1+x2 的值是( )
    A、5 B、-5 C、6 D、-6
  • 10. 已知: ab=23  ,下列式子中错误的是(    )
    A、ba=32 B、a+bb=53 C、abb=13 D、a1b1=12
  • 11. 如图,△ABC中,DE∥AB,则下列式子中错误的是(    )

    A、CDAD=CEBE B、CDAC=CEBC C、DEAB=CDAD D、DEAB=CEBC
  • 12. 如图,ABCD中,EAD延长线上一点,BEAC于点F , 交DC于点G , 则下列结论中错误的是(  )

    A、ABE∽△DGE B、CGB∽△DGE C、BCF∽△EAF D、ACD∽△GCF

二、填空题

  • 13. 反比例函数y= 3x 图象经过点A( x1y1 )和B( x2y2 ),且 x1>x2>0 .则 y1y2 的大小关系是
  • 14. 如图,△ABC中,D是边AB上一点,要使△ABC∽△ACD,添加一个条件,你所添加的条件是

  • 15. 已知8:x =6:9,则x的值等于
  • 16. 三角形两边的长是3和4,第三边的长是方程x2﹣12x+35=0的根,则该三角形的周长为
  • 17. 设 x1x2 是方程 x23x7=0 的两根,则 x12+x22+4x1x2 的值为
  • 18. 如图,点p在反比例y= 2x  的图象上,且OP=4,过点P作PA x轴于点A,则△OPA的周长等于

三、解答题

  • 19. 解下列方程:    
    (1)、2(x2)2   =3(2x)
    (2)、5x24x=12
  • 20. 已知反比例函数的图象经过P(-2·3).
    (1)、求此反比例函数的解析式;
    (2)、点A(2.-3)、B(3,2)是否在这个函数的图象上?
    (3)、这个函数的图象位于哪些象限?函数值y随自变量x的减小如何变化?
  • 21. 关于x的方程 kx2+(k+2)x+k4=0  有两个不相等的实数根.
    (1)、求k的取值范围。
    (2)、是否存在实数k,使方程的两个实数根的倒数和等于0?若存在,求出k的值;若不存在,说明理由.
  • 22. 如图,在Rt△ABC中,∠ACB=90 ° ,CD AB于D.

    (1)、写出图中相似的三角形;
    (2)、求证: CD2 = AD·BD  .
  • 23. 某蔬菜生产基地在气温较低时,用装有恒温系统的大棚栽培一种在自然光明且温度为18 的条件下生长最快的新品种.如图,是某天恒温系统从开启到关闭及关闭后,大棚内温度y( )随时间x(小时)变化的函数图象,其中BC段足双曲线 y=kx  的一部分,请根据图中信息解答下列问题:

    (1)、恒温系统这天保持大棚内温度18 的时间有多少小时?
    (2)、求k值;
    (3)、当x=15时,大棚内的温度约为多少度?
  • 24. 如图,在△ABC中,D、E分别是边AC、BC的中点,F是BC延长线上一点,∠F=∠B.

    (1)、若AB=1O,求FD的长;
    (2)、若AC=BC.求证:△CDE∽△DFE .
  • 25. 如图,四边形ABCD中AC平分∠BAD,∠ADC=∠ACB= 90° ,E为AB的中点,AC与DE交于点F.

    (1)、求证: AC2 =AB·AD;
    (2)、求证:CE//AD;
    (3)、若AD=6, AB=8.求 ACAF 的值.
  • 26. 某特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克,若该专卖店销售这种核桃要想平均每天获利2240元,请回答:
    (1)、每千克核桃应降价多少元?
    (2)、在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?