山东省东营市2018年中考数学试卷
试卷更新日期:2018-08-03 类型:中考真卷
一、选择题
-
1. 下列运算正确的是( )A、﹣(x﹣y)2=﹣x2﹣2xy﹣y2 B、a2+a2=a4 C、a2•a3=a6 D、(xy2)2=x2y42. 在平面直角坐标系中,若点P(m﹣2,m+1)在第二象限,则m的取值范围是( )A、m<﹣1 B、m>2 C、﹣1<m<2 D、m>﹣13. 为了帮助市内一名患“白血病”的中学生,东营市某学校数学社团15名同学积极捐款,捐款情况如下表所示,下列说法正确的是( )
捐款数额
10
20
30
50
100
人数
2
4
5
3
1
A、众数是100 B、中位数是30 C、极差是20 D、平均数是304. 小岩打算购买气球装扮学校“毕业典礼”活动会场,气球的种类有笑脸和爱心两种,两种气球的价格不同,但同一种气球的价格相同.由于会场布置需要,购买时以一束(4个气球)为单位,已知第一、二束气球的价格如图所示,则第三束气球的价格为( )A、19 B、18 C、16 D、155.如图,在四边形ABCD中,E是BC边的中点,连接DE并延长,交AB的延长线于F点,AB=BF.添加一个条件,使四边形ABCD是平行四边形.你认为下面四个条件中可选择的是( )
A、AD=BC B、CD=BF C、∠A=∠C D、∠F=∠CDE6. 如图所示,圆柱的高AB=3,底面直径BC=3,现在有一只蚂蚁想要从A处沿圆柱表面爬到对角C处捕食,则它爬行的最短距离是( )A、 B、 C、 D、7. 如图所示,已知△ABC中,BC=12,BC边上的高h=6,D为BC上一点,EF∥BC,交AB于点E,交AC于点F,设点E到边BC的距离为x.则△DEF的面积y关于x的函数图象大致为( )A、 B、 C、 D、8. 如图,点E在△DBC的边DB上,点A在△DBC内部,∠DAE=∠BAC=90°,AD=AE,AB=AC.给出下列结论:①BD=CE;②∠ABD+∠ECB=45°;③BD⊥CE;④BE2=2(AD2+AB2)﹣CD2 . 其中正确的是( )
A、①②③④ B、②④ C、①②③ D、①③④二、填空题
-
9. 东营市大力推动新旧动能转换,产业转型升级迈出新步伐.建立了新旧动能转换项目库,筛选论证项目377个,计划总投资4147亿元.4147亿元用科学记数法表示为元.10. 分解因式:x3﹣4xy2= .11. 有五张背面完全相同的卡片,其正面分别画有等腰三角形、平行四边形、矩形、正方形、菱形,将这五张卡片背面朝上洗匀,从中随机抽取一张,卡片上的图形是中心对称图形的概率是 .
12. 如图,B(3,﹣3),C(5,0),以OC,CB为边作平行四边形OABC,则经过点A的反比例函数的解析式为 .13. 如图,在Rt△ABC中,∠B=90°,以顶点C为圆心,适当长为半径画弧,分别交AC,BC于点E,F,再分别以点E,F为圆心,大于 EF的长为半径画弧,两弧交于点P,作射线CP交AB于点D.若BD=3,AC=10,则△ACD的面积是 .14. 已知一个圆锥体的三视图如图所示,则这个圆锥体的侧面积为 .15. 在平面直角坐标系内有两点A、B,其坐标为A(﹣1,﹣1),B(2,7),点M为x轴上的一个动点,若要使MB﹣MA的值最大,则点M的坐标为 .16. 如图,在平面直角坐标系中,点A1 , A2 , A3 , …和B1 , B2 , B3 , …分别在直线y= x+b和x轴上.△OA1B1 , △B1A2B2 , △B2A3B3 , …都是等腰直角三角形.如果点A1(1,1),那么点A2018的纵坐标是 .三、解答题
-
17.
(1)、计算:|2﹣ |+( +1)0﹣3tan30°+(﹣1)2018﹣( )﹣1;(2)、解不等式组: 并判断﹣1, 这两个数是否为该不等式组的解.18. 2018年东营市教育局在全市中小学开展了“情系疏勒书香援疆”捐书活动,200多所学校的师生踊跃参与,向新疆疏勒县中小学共捐赠爱心图书28.5万余本.某学校学生社团对本校九年级学生所捐图书进行统计,根据收集的数据绘制了下面不完整的统计图表.请你根据统计图表中所提供的信息解答下列问题:图书种类
频数(本)
频率
名人传记
175
a
科普图书
b
0.30
小说
110
c
其他
65
d
(1)、求该校九年级共捐书多少本;(2)、统计表中的a= , b= , c= , d=;(3)、若该校共捐书1500本,请估计“科普图书”和“小说”一共多少本;(4)、该社团3名成员各捐书1本,分别是1本“名人传记”,1本“科普图书”,1本“小说”,要从这3人中任选2人为受赠者写一份自己所捐图书的简介,请用列表法或树状图求选出的2人恰好1人捐“名人传记”,1人捐“科普图书”的概率.19. 小明和小刚相约周末到雪莲大剧院看演出,他们的家分别距离剧院1200m和2000m,两人分别从家中同时出发,已知小明和小刚的速度比是3:4,结果小明比小刚提前4min到达剧院.求两人的速度.
20. 如图,CD是⊙O的切线,点C在直径AB的延长线上.(1)、求证:∠CAD=∠BDC;
(2)、若BD= AD,AC=3,求CD的长.
21. 关于x的方程2x2﹣5xsinA+2=0有两个相等的实数根,其中∠A是锐角三角形ABC的一个内角.(1)、求sinA的值;
(2)、若关于y的方程y2﹣10y+k2﹣4k+29=0的两个根恰好是△ABC的两边长,求△ABC的周长.
22. 如图(1)、某学校“智慧方园”数学社团遇到这样一个题目:如图1,在△ABC中,点O在线段BC上,∠BAO=30°,∠OAC=75°,AO= ,BO:CO=1:3,求AB的长.
经过社团成员讨论发现,过点B作BD∥AC,交AO的延长线于点D,通过构造△ABD就可以解决问题(如图2).
请回答:∠ADB=°,AB= .
(2)、请参考以上解决思路,解决问题:如图3,在四边形ABCD中,对角线AC与BD相交于点O,AC⊥AD,AO= ,∠ABC=∠ACB=75°,BO:OD=1:3,求DC的长.
23. 如图,抛物线y=a(x﹣1)(x﹣3)(a>0)与x轴交于A、B两点,抛物线上另有一点C在x轴下方,且使△OCA∽△OBC.(1)、求线段OC的长度;
(2)、设直线BC与y轴交于点M,点C是BM的中点时,求直线BM和抛物线的解析式;
(3)、在(2)的条件下,直线BC下方抛物线上是否存在一点P,使得四边形ABPC面积最大?若存在,请求出点P的坐标;若不存在,请说明理由.