安徽省2018年中考数学试卷
试卷更新日期:2018-06-29 类型:中考真卷
一、单选题
-
1. 的绝对值是( )A、 B、8 C、 D、2. 2017年我省粮食总产量为635.2亿斤,其中635.2亿科学记数法表示( )A、 B、 C、 D、3. 下列运算正确的是( )
A、 B、 C、 D、4. 一个由圆柱和圆锥组成的几何体如图水平放置,其主(正)视图为( )A、 B、 C、 D、5. 下列分解因式正确的是( )
A、 B、 C、 D、6. 据省统计局发布,2017年我省有效发明专利数比2016年增长22.1%假定2018年的平均增长率保持不变,2016年和2018年我省有效发明专利分别为a万件和b万件,则( )
A、 B、 C、 D、7. 若关于 的一元二次方程x(x+1)+ax=0有两个相等的实数根,则实数a的值为( )
A、 B、1 C、 D、8. 为考察两名实习工人的工作情况,质检部将他们工作第一周每天生产合格产品的个数整理成甲,乙两组数据,如下表:甲
2
6
7
7
8
乙
2
3
4
8
8
类于以上数据,说法正确的是( )
A、甲、乙的众数相同 B、甲、乙的中位数相同 C、甲的平均数小于乙的平均数 D、甲的方差小于乙的方差9. ▱ABCD中,E,F是对角线BD上不同的两点,下列条件中,不能得出四边形AECF一定为平行四边形的是( )
A、BE=DF B、AE=CF C、AF//CE D、∠BAE=∠DCF10. 如图,直线 都与直线l垂直,垂足分别为M,N,MN=1,正方形ABCD的边长为 ,对角线AC在直线l上,且点C位于点M处,将正方形ABCD沿l向右平移,直到点A与点N重合为止,记点C平移的距离为x,正方形ABCD的边位于 之间分的长度和为y,则y关于x的函数图象大致为( )A、 B、 C、 D、二、填空题
-
11. 不等式 的解集是.12. 如图,菱形ABOC的AB,AC分别与⊙O相切于点D、E,若点D是AB的中点,则∠DOE.13. 如图,正比例函数y=kx与反比例函数y= 的图象有一个交点A(2,m),AB⊥x轴于点B,平移直线y=kx使其经过点B,得到直线l,则直线l对应的函数表达式是 .14. 矩形ABCD中,AB=6,BC=8.点P在矩形ABCD的内部,点E在边BC上,满足△PBE∽△DBC,若△APD是等腰三角形,则PE的长为数.
三、解答题
-
15. 计算:16. 《孙子算经》中有过样一道题,原文如下: “今有百鹿入城,家取一鹿不尽,又三家共一鹿适尽,问城中家几何?” 大意为:今有100头鹿进城,每家取一头鹿,没有取完,剩下的鹿每3家共取一头,恰好取完,问城中有多少户人家?请解答上述问题.
17. 如图,在由边长为1个单位长度的小正方形组成的10×10网格中,已知点O,A,B均为网格线的交点.(1)、①在给定的网格中,以点O为位似中心,将线段AB放大为原来的2倍,得到线段 (点A,B的对应点分别为 ).画出线段 ;②将线段 绕点 逆时针旋转90°得到线段 .画出线段 ;
(2)、以 为顶点的四边形 的面积是个平方单位.18. 观察以下等式:第1个等式: ,
第2个等式: ,
第3个等式: ,
第4个等式: ,
第5个等式: ,
……
按照以上规律,解决下列问题:
(1)、写出第6个等式:;(2)、写出你猜想的第n个等式:(用含n的等式表示),并证明.
19. 为了测量竖直旗杆AB的高度,某综合实践小组在地面D处竖直放置标杆CD,并在地面上水平放置个平面镜E,使得B,E,D在同一水平线上,如图所示.该小组在标杆的F处通过平面镜E恰好观测到旗杆顶A(此时∠AEB=∠FED).在F处测得旗杆顶A的仰角为39.3°,平面镜E的俯角为45°,FD=1.8米,问旗杆AB的高度约为多少米? (结果保留整数)(参考数据:tan39.3°≈0.82,tan84.3°≈10.02)20. 如图,⊙O为锐角△ABC的外接圆,半径为5.(1)、用尺规作图作出∠BAC的平分线,并标出它与劣弧BC的交点E(保留作图痕迹,不写作法);
(2)、若(1)中的点E到弦BC的距离为3,求弦CE的长.21. “校园诗歌大赛”结束后,张老师和李老师将所有参赛选手的比赛成绩(得分均为整数)进行整理,并分别绘制成扇形统计图和频数直方图部分信息如下:(1)、本次比赛参赛选手共有人,扇形统计图中“69.5~79.5”这一组人数占总参赛人数的百分比为;
(2)、赛前规定,成绩由高到低前60%的参赛选手获奖.某参赛选手的比赛成绩为78分,试判断他能否获奖,并说明理由;(3)、成绩前四名是2名男生和2名女生,若从他们中任选2人作为获奖代表发言,试求恰好选中1男1女的概率.
22. 小明大学毕业回家乡创业,第一期培植盆景与花卉各50盆售后统计,盆景的平均每盆利润是160元,花卉的平均每盆利润是19元,调研发现:①盆景每增加1盆,盆景的平均每盆利润减少2元;每减少1盆,盆景的平均每盆利润增加2元;②花卉的平均每盆利润始终不变.
小明计划第二期培植盆景与花卉共100盆,设培植的盆景比第一期增加x盆,第二期盆景与花卉售完后的利润分别为W1 , W2(单位:元)
(1)、用含x的代数式分别表示W1 , W2;
(2)、当x取何值时,第二期培植的盆景与花卉售完后获得的总利润W最大,最大总利润是多少?23. 如图1,Rt△ABC中,∠ACB=90°,点D为边AC上一点,DE⊥AB于点E,点M为BD中点,CM的延长线交AB于点F.(1)、求证:CM=EM;(2)、若∠BAC=50°,求∠EMF的大小;(3)、如图2,若△DAE≌△CEM,点N为CM的中点,求证:AN∥EM.